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The motion of an orbital tether system comprising a massive body and a gyrostat of small mass attached to it by a non-extensible 
weightless tether is examined. The body performs unperturbed motion in a Kepler orbit. There are several different equilibria 
of the system relative to a uniformly rotating system of coordinates. These equilibria are interpreted geometrically using Mohr 
circles. Despite being the simplest example of an orbital tether system with a gyrostat, it exhibits a wealth of dynamic properties. 
There are also more complex orbital tether systems which contain more than one gyrostat [1]. © 1999 Elsevier Science Ltd. 
All rights reserved. 

Let one end of a tether (pointA) be attached to a massive body that performs uniform motion in a circular Kepler 
orbit, which cannot be disturbed by the motion of a second body. I f N  is an attracting centre, then R = NA = Ry, 
where R is the radius of the orbit and "/is a unit vector. The other end of the tether (point B) is attached to the 
gyrostat frame, and the points A and B are a distance l apart. Then L = AB -- lh, where h is also a unit vector. 
The point C is taken as the centre of mass of the gyrostat, and the vector k = BC is assumed to be fixed in its 
casing. The vector r --- NC, which defines the position of the centre of mass of the gyrostat in absolute space, is 
related to the above vectors by the equation 

r = R + L + k  

Suppose that inside the gyrostat there is a rotor which rotates relative to its casing with constant relative angular 
velocity tb. This is an example of a Kelvin gyrostat (see [2, pp. 256--19] for example). Let NXIX2X 3 be an orbital 
system of  coordinates which rotates uniformly about the axis NX2, formed by the unit vector ~,, 13 and c~ = 13 × ~,, 
where 13 and ct are the normal to the orbital plane and the tangent to the circular orbit at the pointA. In the rotating 
system of coordinates NX1 II a ,  NX2 II 13, NX3 [I ~'. We also introduce a system of coordinates which is fixed in the 
gyrostat frame, the axes coinciding with the principal axes of the central tensor of inertia I of the gyrostat as a 
whole. We will denote this system of coordinates of C-xlx2x 3 (Fig. 1). Let co = (cot, co2, co3) be the vector of the absolute 
angular velocity of the gyrostat and let K = (K1, K2, K3) be the kinetic moment of the rotor (KMR). The magnitude 
of the vector K is proportional to the magnitude of the angular velocity of the rotor. Here and below, unless otherwise 
stated, all vector magnitudes are given as their projections onto axes associated with the gyrostat. 

We will use the Routh-Lyapunov method to find the relative equilibria in the orbital system of coordinates and 
investigate their stability properties. This involves investigating the critical points of changed potential, considered 
as a function at the common level of the "geometric" integrals 

~¢ -- ('y, "y)-1  =0,  ~,,vl3=(',/,[l)=0, n l l= (b ,  13)-1 = 0  , 7 t h = ( h , h ) _ l  = 0 

which express the fact that the system of vectors (or, 13, ~,) is orthonormalized and h is a unit vector. In order to 
use the method of Lagrange multipliers, we construct the Routh function (~ is the constant orbital angular velocity) 

_ WK v +~mtnh w~ - ---~ +3Xx~ +~x~ -~o~. t 

where 

W~-,=-~t2[(I13, l~)-m(13, &+k)2]-~t(K, fl)+~2[(I~,, 3,)-m(y,/h+k)2]+constK 

is the changed potential [3]. 
The critical points are found from a system of 13 algebraic equations, in the general case non-linear, of the 

form 
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Fig. 1. 

~Wx = 3 [ ( l ( h ) - o E ) ~ / + ~ ]  =3[(I-ffE)'y+~-m(~¢, /h+k)  (/h+k)] =0 

aWx ffi3~.~/+(vE-I(h))13-~/-IK = 3 ~ / + ( v E - I ) 1 3 - ~ t - l K + m ( [ I ,  / h + k ) ( / h + k ) = 0  

aw~ 
ah = m/[(13' /h + k)15-3(% /h + k~, + xh] = 0 

aw~ = aw~ = aw..___,= aw~ = 0 

Here E is the 3 × 3 identity matrix. 
It turns out that there are particular solutions for which the four points N, A, B and C lie on a straight line. If 

i~=(h, ~/), i e r = ( k ,  ~/), o*=o+m(U~t+i~t )2 

the gyrostat orientation is given by the equations 

( I -o*E~ ,+XI~  =0, , - I K  = 37t~, +(vE-I ) l~  (1) 

Apart from the notation, Eqs (1) are the same as the equations of the relative equilibria of a satellite-gyrostat. 
The position of the vector k in the gyrostat is specified. Then for the given motions, the direction of the vector ~, 
is also specified. Thus it is sensible to use what is known as a semi-inverse method, in which the orientation of the 
gyrostat in relation to the vector T is specified, and the orientation of the gyrostat in relation to the vectors ot and 
I~ is investigated as a function of the KMR K, which ensures that orientation. As in [4] we have 

o*=(I~/ ,~/) ,  ~.2=(I~/x~,, ITx 'y) ,  I ~ = - ~ - I ( I - o * E ) ~ ,  a= l~x~ /  

The KMR which ensures that orientation is found from the relations 

v - I K  = 3~. T + ( r E -  I)l~ (2) 

If Z. = 0, that is, y is an eigenvector of the matrix I, the gyrostat can have any orientation relative to 15, and this 
can be controlled by the KMR in accordance with (2). A KMR which provides a given gyrostat orientation forms 
a one-parameter family relative to the parameter v, which can be written as v = (I1~, I~) + ~-I(K, I~). 

Unlike o*, the parameters ~. and v have quite a simple mechanical interpretation. The parameter Z. is proportional 
to the magnitude of the moment of forces of Newtonian attraction. The parameter v, as in the case of a satellite- 
gyrostat [4], is proportional to the projection of the vector of the kinetic moment of the system onto the 15 axis, 
perpendicular to the orbital plane. These motions can be called collinear relative equilibria. 

The method of parametric representation of relative equilibria for a satellite-gyrostat described in [5, 6] can 
also be used for this class of motions. 

We will consider Eqs (1) as a linear system in 15 and y, taking the rest of the parameters to be fixed. The solution 
of this system can be written in the form 

l~i = Y._L/= ~-IKi 
a*-l~ X a~.2+<v-ti)(o*-ti)  
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Substituting this solution into the orthonormality conditions for I~ and 4, we obtain a linear system of equations 
in K21, K22, ~'23. Solving this system and substtuting the expressions for/~2/into the relations for 13 and % we have 

,:2 = ( 1 3 - t 2 ) ( z 2 + ( o * - x 2 ) ( o * - t 3 ) )  p~ = (o*-~rl)  2 ~,2(~23 ) 
(~2-1s)( ,r3- ,r~)(~,-12) ' ~.2 

(3) 

Expressions that have not been written out explicitly are obtained by cyclical permutation of the indices. 
Hence, the complete set of relative equilibria and the KMR which ensures them turns out to be the parametricized 

quantities (~, c*, v). The expressions for these quantities, defining the orientation of the gyrostat, are independent 
of v, a parameter which affects only the expressions for the KMR. The parameters (L c~*), however, are not arbitrary. 

Suppose, for example, that 

11 < / 2 < 6  (4) 

The conditions under which the expressions on the right-hand sides of (3) are non-negative are 

h~ =X2+(o*-/2)(o*-13)~0,  A2 =X2 +(o*_1a)(o*_ll)<~0, 
(5) 

as = ~,2 +(o* - /~)(o*- t2) ~, 0 

These conditions are satisfied in a cylindrical region D of (~, o*, v) space, hounded by the cylindrical surface {At 
= 0, A2 = 0, A3 = 0} × R1(v). The circular sections of D by the plane v = 0, shown in Fig. 2, are similar to the 
Mohr circles of elasticity theory. The cylinders might be as shown in Fig. 3. Similar figures for a satellite-gyrostat 
have been found and investigated in [5, 6]. 

The straight lines ~. = 0, o* = Ii, which form part of the boundary of D and touch the three cylinders taken in 
pairs, correspond to the families of relative equilibria 

Y1=I, "/2=Ta=J31=O, 132=sin0, 13a=cos0 (123) 

For the relative equilibria corresponding to the first index of cyclical permutation, the first axis of inertia indicates 
the attractive centre, and the gyrostat is rotated about this axis through an angle 0. The axis of the rotor is orthogonal 
to the vector 7 and lies in the plane Cx2x3. The other relative equilibria can be interpreted in the same way. Relative 
equilibria of this class are similar to those of a satellite-gyrostat [4, 7]. 

The points of the cylinders Ai = 0 (i = 1, 2, 3) correspond to the relative equilibria 

7 t=cos0,  y 2 = - s i n 0 ,  ¥3=153=0, 151=sin0, 152=cos0(123) 

3.=(12-1a)sinOcosO, O* = II eosZO+/2 sin20 

Klqt -i = ( v -  1 ! +3(1] - h)cos 2 0)sin0 

K2~ -I =(v-12 +3(I 2-11)sin20)cos0, K 3 =0 

For the relative equilibria corresponding to the first index of cyclical permutation, the third axis of inertia is in 
the direction of the tangent to the orbit, defined by the vector ct, the plane CxF2 coincides with the plane (1~, 30, 
and the axig Cx2 makes an angle 0 with the vector ~. The axis of the rotor lies in the plane Cx~x2, that is, it is 
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orthogonal to the vector ct. The other relative equilibria can be interpreted in the same way. The relative equilibria 
of this class are similar to those of the satellite-gyrostat investigated in [4, 7]. 

To conclude, it should be noted that Mohr circles arise in theoretical mechanics not only in connection with the 
dynamics of orbital system with gyrostats, but also in the theory of oscillations of systems with two degrees of freedom 
[8]. They also appear in the dynamics of solids with a fixed point [9]. 
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